The generator matrix 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 X 0 X 0 X X 0 X^2 X^2 0 X 0 X^2+X 0 X^2+X 0 X X^2 X^2+X X^2 X X^2 X^2+X X^2 X X^2+X X X^2+X X X^2+X X X X 0 0 0 X^2 0 0 X^2 X^2 X^2 X^2 0 X^2 0 0 X^2 0 X^2 0 0 X^2 X^2 0 X^2 0 X^2 0 0 0 0 X^2 X^2 X^2 X^2 0 0 0 X^2 X^2 X^2 0 0 X^2 0 X^2 X^2 0 X^2 0 0 X^2 0 generates a code of length 25 over Z2[X]/(X^3) who´s minimum homogenous weight is 24. Homogenous weight enumerator: w(x)=1x^0+92x^24+32x^28+3x^32 The gray image is a linear code over GF(2) with n=100, k=7 and d=48. As d=48 is an upper bound for linear (100,7,2)-codes, this code is optimal over Z2[X]/(X^3) for dimension 7. This code was found by Heurico 1.16 in 0.00505 seconds.